

OCEAN Project

D3.1: Comparative Analysis of NOCs carbon footprint results

Tobias Wagner, Julia Schütz, Dr. Hartmut Stahl, Hannah Bachmann Oeko-Institut e.V. November 2024 Project ID: 101050284

SCOPE OF THE DOCUMENT

D3.1 provides a **Comparative Analysis of NOCs' Carbon Footprints**, compiled by the Öko-Institut. Data collected on partner NOCs' carbon footprints (from areas such as travel, energy use, and event production) informs D3.1, which uses 2022 as the baseline year.

It forms the foundation for the Pool of Actions, a toolkit of carbon reduction measures developed with input from Öko-Institut, IOC, and NOCs to support National Olympic Committees (NOCs) in drafting tailor-made carbon reduction strategies. This analysis, along with tools like the measurement web tool (D3.3) and tailored reduction strategies (D4.2) offer NOCs actionable insights and resources to advance toward carbon neutrality.

PROJECT OBJECTIVES

The **main objective of the project** is to empower National Olympic Committees to acquire relevant knowledge to measure their carbon footprint and define tailored carbon reduction strategies in order to reduce their carbon emissions and strengthen good governance in the field of climate action.

Accordingly, OCEAN has the hereunder **specific objectives**:

- To manage all project activities and consortiums interactions to guarantee a constructive and highquality implementation of the project activities.
- To monitor all project activities to pursue the project purposes in the most time/cost effective manner.
- To develop and implement a training course for NOCs representative to become Climate Action Officers within their organisation.
- To create a network of Climate Action Officers across European NOCs.
- To develop a carbon emissions measurement tool tailorable to the needs of each partner NOC.
- To measure the carbon footprint of each partner NOC in order to define their baseline.
- To develop and validate a "Pool of Actions" to reduce carbon emission of NOCs.
- To develop tailored carbon reduction strategies per each partner NOC.
- To communicate the project achievements and deliverables to other NOCs and relevant stakeholders.
- To embrace approaches to guarantee the sustainability and impact of the project.

METHODS

Co-funded by the European Union

Overview on the procedure of carbon footprinting

٠

٠

•

•

۲

Scope definition: NOCs Carbon Footprint Measurement

- <u>General rule</u>: The NOC collects data on all activities, following the IOC decision tree (slide 5). Activities are divided in the following categories: Energy & Buildings; Refrigerants; Construction; Canteens; Water & Waste; Materials usage; Commuting; Vehicle fleet; Travel (flights, railway, others); Overnight stays; Events (organisation and participation).
- <u>Exemption:</u>
- All the collected data will be part of the NOC's <u>general</u> carbon footprint, apart from one exemption.: <u>the travel and accommodation in the Olympic Village of athletes and their entourage for the Olympic Games</u>.
- These emissions are included in the carbon footprint measurement of the Organising Committee of the Olympic Games (OCOG), This will be shown only in an <u>annex</u> to the NOC's general carbon footprint. Nevertheless, the NOCs should strive for a reduction of the carbon footprint in these areas as well.
- The data collected for all other sports events (e.g. European Games, European Youth Olympic Festival, Youth Olympic Games) will be included in the NOCs general footprint results.

Scope definition: Decision tree in the IOC Carbon Footprint Methodology (adapted to OCEAN project)

*If the answer is YES but the emissions cannot be estimated with any reasonable degree of accuracy, these may be excluded from the carbon footprint calculation. However, their omission must be clearly explained and justified in the carbon footprint report.

- Headquarters and other permanent buildings
- Events
- Further operationally controlled organisations

Applied emission factors

Country-specific

- Electricity (average and residual)
- Water
- Waste
- Diesel burnt in cars/motorbikes
- Trains
- Travels in cars
- Overnight stays
- <u>Airport-specific:</u> flights

European average

- Natural gas, oil, coal, wood, district heating
- Sewage
- Paper, IT devices, other investment good
- Materials for individual purchases
- Food and beverages
- Gasoline burnt in cars/motorbikes
- Local public transport, Ferries, coaches
- Logistics

Sources: DEFRA, Eurostat, EEA, IOC (Quantis), etc. (see the list in D3.3)

Location-based versus market-based

Scope 2 emissions shall be reported according to a location-based method **and** a market-based method.

"A location-based method reflects the average emissions intensity of grids on which energy consumption occurs (using mostly grid-average emission factor data)."

"A market-based method reflects emissions from electricity that companies have purposefully chosen (or their lack of choice)."

	Location-based	Market-based
Renewable electricity	National grid average	0 1
Non-renewable electricity	National grid average	National residual mix

Residual mix: emission factor representing the average emissions from all unclaimed energy ("grid mix without renewables").

Source: GHG Protocol Scope 2 Guidance https://ghgprotocol.org/sites/default/files/2022-12/Scope2_ExecSum_Final.pdf

¹: Scope 3 emissions of electricity consumption are not necessarily 0.

CARBON FOOTPRINT RESULTS

Reference year: 2022

Co-funded by the European Union

Overall results t CO₂ equiv. / year | Location-based approach

- Order of magnitude ~ 500 to 5 000 tons of CO₂ equivalents per NOC during the reference year 2022 → limited direct relevance
- Example: GREs result of 2 000 tons of CO₂ equivalents is equal to the annual emissions of approximately 250 European citizens
- Factor of almost 20 between lowest and highest emission results

BEL: Belgium BIH: Bosnia and Herzegovina CRO: Croatia CZE: Czechia DEN: Denmark ESP: Spain FRA: France GRE: Greece

IRL: Ireland KOS: Kosovo LTU: Lithuania LUX: Luxembourg MKD: North Macedonia POL: Poland POR: Portugal ROM: Romania SVK: Slovakia

Number of inhabitants of the represented country

Number of employees (full time equivalents, FTE)

Overall results t CO₂ equiv. / FTE / year | Location-based approach

- Still a large range
- Organisation's size, i.e. number of employees (full time equivalents, FTE), in many cases used as reference value

Overall results t CO₂ equiv. / FTE / year | Location-based approach

- External events dominant for BIH, CZE, KOS, LUX, POL
- Flights dominant for BEL, ESP, FRA, IRL, POR, SVK
- Diverse hot spots → there is no one-fits-all solution / strategy

Overall results t CO₂ equiv. / FTE / year | Location-based approach

	BEL	BiH	H CR	o cz	E DE	EN ESF	P FR/	A G	RE IRI	_ к	OS L	TU L	UX N	1KD	POL I	POR	ROM	SVK
Building	s'																	
energ	y																	
consumptio	n	1	0	1	1	6	4	1	9	-	1	4	1	20) 36	0	18	3 1
Refrigerant	s	-	_	0	_	_	_	1	2	_	_	_	_				- 11	L 0
Canteen	IS	-	-	-	-	6	0	-	-	-	2	-	-	-	. <u>-</u>	-	. () -
Material	ls																	
usag	e	4	2	3	5	3	0	4	11	3	5	3	3	3	3 3	6	; <u> </u>	L 4
Commutin	g	1	0	1	1	1	1	0	2	2	0	1	1	C) 0	1	,	L 0
Vehicle flee	et	0	1	1	2	-	0	0	2	_	3	3	2	1	3	1	. () 0
Flight	ts 2	20	9	0	1	1	19	18	17	11	7	2	7	3	3 3	11	. 4	2 8
Overnigh	nt																	
stay	/s	4	2	0	0	0	0	1	3	1	5	0	1	1	. 0	3		2 2
Externa event	al :s	-	82	_	78	2	_	7	6	5	22	7	34	3	8 50	-	. 4	4 1
In-hous	e																	
event	S	0	4	1	0	-	14	1	1	-	-	-	-	C) –	0) (0 0
Other	s	0	1	0	0	1	0	1	3	0	0	0	0	C) 0	C) <u>^</u>	L 3
Tota	al 3	31	101	7	89	21	39	35	57	22	44	21	49	31	97	23	4() 20

Overall results t CO₂ equiv. / FTE / year | Market-based approach

There are two accounting approaches (of equal rank): the location-based and the market-based approach.

Results are generally shown with both accounting approaches (noted in the headline).

If all results are calculated based on a market-based approach:

- Notably lower
 emissions for: ESP
- Notably higher emissions for: DEN, GRE, MKD, POL

Overall results t CO₂ equiv. / FTE / year | Market-based approach

	BEL	Bi⊢	I CRO	CZE	DEN	ESP	FRA	GRE	IRL	KOS	5 LTI	J LUX	МКС) PO	L PC	DR R	ROM	SVK
Buildings	I																	
energy	/																	
consumption	1	1	0	2	1	10	1	1	11	-	1	4	1	15	44	1	18	3 1
Refrigerants	5	_	-	0	-	-	-	1	2	-	-	-	-	-	-	_	11	1 0
Canteens	5	-	-	-	-	6	0	-	-	-	2	-	-	-	-	-	() -
Materials	5																	
usage	5	4	2	3	5	3	0	4	11	4	5	3	3	3	4	6		L 4
Commuting)	1	0	1	1	1	1	0	2	2	0	1	1	0	0	1	-	L 0
Vehicle fleet	t	0	1	1	2	-	0	0	2	_	3	3	2	1	3	1	() 0
Flights	5 2	20	9	0	1	1	19	18	17	11	7	2	7	3	3	11	2	28
Overnight	t																	
stays	5	4	2	0	0	0	0	1	3	1	5	0	1	1	0	3	2	2 2
External events	l S	-	82	_	78	2	_	7	6	5	22	7	34	3	50	-	Z	4 1
In-house	3																	
events	5	0	4	1	0	-	14	1	1	-	-	-	-	0	-	0	() 0
Others	5	0	1	0	0	1	0	1	3	0	0	0	0	0	0	0	-	L 3
Total	L 3	31	101	8	90	26	36	35	58	22	44	21	49	27	104	23	40) 20

Headquarters: energy efficiency kWh/m²/year

Subset of NOCs heating with natural gas, district heating, wood pellets

- ROM, CRO, LTU, CZE, BEL, POL: Energy efficiency measures (insulation, heat bridges, windows/entrances, heating system)
- POL, CRO, ROM: High electricity demand
- POL: Higher share of electricity than of heating/cooling
- BIH: Electricity consumption not visible

Headquarters: energy efficiency kWh/m²/year

Buildings: energy consumption t CO₂ equiv. / FTE / year | Location-based approach

- POL, MKD, ROM, GRE, DEN, LTU: hot spot of GHG emissions
- ROM, GRE: relevant emissions arising from other buildings

Buildings: energy consumption t CO₂ equiv. / FTE / year | Market-based approach

Market-based approach:

- Notably lower
 emissions for: ESP
- Notably higher emissions for: DEN, GRE, MKD, POL
- Switch to an electricity contract with renewable energies (including certificates)

Refrigerants t CO₂ equiv. / FTE / year

In some cases relevant emissions due to high global warming potential of refrigerant substances and potential leakages

Materials usage t CO₂ equiv. / FTE / year

Subset of NOCs with detailed information on procuring incl. assignment of product groups

- Sports equipment dominant in the majority of cases
- ROM: No sports equipment
- GRE, SVK: Notable emissions from give aways and gifts

Commuting Modal split

- Generally car-dominated modal split of Person-kilometres, particularly for BEL, CRO, IRL, LTU, LUX, POL, POR
 - Support car-pooling
 - Are your headquarters well accessible via public transport?
- KOS, BIH: High share of foot / bicycle
- FRA, CZE, GRE, SVK: High share of public transport
- DEN: Electric cars
- ESP: Motorbikes / scooters
- ROM: Plane

Commuting

Person-kilometres per employee (full time equivalent)

- KOS, MKD, POL: short commuting distances
- GRE, IRL: long commuting distances

Commuting t CO₂ equiv. / FTE / year

Vehicle fleet t CO₂ equiv. / FTE / year

 Vehicle fleets used to a strongly varying degree

Flights t CO₂ equiv. / FTE / year

- Flights of athletes and entourage usually dominant
 - CRO, DEN, MKD: small emissions
- Flights of NOC's staff:
 - Low for CZE, ESP, FRA, GRE, ROM
 - High for IRL, LUX, SVK
- VIPs, guests, volunteers: relevant for GRE
- MKD, LTU, DEN, CRO: no differentiation of persongroups

Overnight stays t CO₂ equiv. / FTE / year

- Own staff are compared per FTE:
- High for BEL, BIH, IRL, POL, ROM
- Low for CRO, DEN, ESP, FRA, LTU, MKD and POR

Overnight stays

- Athletes/entourage and VIPs/guests/etc. are compared per 1 Million inhabitants:
- CRO, DEN, ESP, LTU, POL: No overnight stays of athletes
- KOS, SVK, BEL: High emissions due to overnight stays of athletes/entourage
- KOS, MKD, GRE, SVK: notable emissions due to overnight stays of VIPs/guests/etc.
- Attention: Emissions per person-night in a 5 star hotel up to 4 times higher than in a 3 star hotel

Events – **in-house events** t CO₂ equiv. / FTE / year

- Transport-related emissions are dominant also regarding events
- Incentivise arrivals via train, support car pooling, raise awareness of your guests, etc.

Events – **external events** t CO₂ equiv. / FTE / year

- (Co-)hosting of external events can cause high emissions
- Wide range of activity level across NOCs

Events – **external events** t CO₂ equiv. / FTE / year

- Usually dominant: transportrelated emissions of public visitors
 - Choose event destination
 close to railway stations
 - raise awareness prior to and during event
 - limit car parking space
 - promote arrival via ecofriendly modes of transport on the event homepage
- Regarding local events other topics, particularly food and energy consumption, become more relevant
 - Consider heat losses
 - Incentivise plant-based food

Results differentiated by scope 1 / 2 / 3

t CO₂ equiv. / year | Location-based approach

- Scope 3 emissions dominant (as expected) → Do not take this as an excuse!
- ROM, POL, DEN, MKD, GRE: remarkable emissions from scope 1 / 2

Results differentiated by scope 1 / 2 / 3 t CO₂ equiv. / year | Location-based approach

	BEL	BiH	CRO	CZE	DEN	ESP	FRA	GRE	IRL	KOS	LTU	LUX	MKD	POL	POR	ROM	SVK
Scope 1	36	5	50	92	0	8	131	139	0	32	75	21	17	89	26	2 349	40
Scope 2	5	1	67	34	636	82	52	266	0	11	4	0	362	1 180	9	681	14
Scope 3	1 005	906	342	4 077	1 828	1 068	3 075	1 578	239	625	210	373	369	2 708	645	1 601	742
Total	1 046	912	459	4 202	2 464	1 157	3 258	1 984	239	667	289	394	747	3 977	680	4 631	796
	20.0					0/	2 200										

Results differentiated by scope 1 / 2 / 3

t CO₂ equiv. / year | Market-based approach

Results differentiated by scope 1 / 2 / 3 t CO₂ equiv. / year | Market-based approach

			UNL	IKL	KU5	LIU	LUX	MKD	POL	POR	ROM	SVK
92 C	8	131	139	0	32	75	21	17	89	26	2349	40
40 11	4 0	74	314	0	5	9	0	254	1473	16	696	16
4078 18	50 1 068	3 083	1 580	242	629	212	374	371	2 719	645	1 602	743
4 209 2 9	64 1076	3 288	2 033	242	666	296	395	642	4 282	688	4 647	798
	92 0 40 111 4078 189 4209 296	92 0 8 40 1114 0 4078 1850 1068 4209 2964 1076	92 0 8 131 40 1114 0 74 4078 1850 1068 3083 4209 2964 1076 3288	92 0 8 131 139 40 1114 0 74 314 4078 1850 1068 3083 1580 4209 2964 1076 3288 2033	92 0 8 131 139 0 40 1114 0 74 314 0 4078 1850 1068 3083 1580 242 4209 2964 1076 3288 2033 242	92 0 8 131 139 0 32 40 1114 0 74 314 0 5 4078 1850 1068 3083 1580 242 629 4209 2964 1076 3288 2033 242 666	92 0 8 131 139 0 32 75 40 1114 0 74 314 0 5 9 4078 1850 1068 3083 1580 242 629 212 4209 2964 1076 3288 2033 242 666 296	92 0 8 131 139 0 32 75 21 40 1114 0 74 314 0 5 9 0 4078 1850 1068 3083 1580 242 629 212 374 4209 2964 1076 3288 2033 242 666 296 395	92 0 8 131 139 0 32 75 21 17 40 1114 0 74 314 0 5 9 0 254 4078 1850 1068 3083 1580 242 629 212 374 371 4209 2964 1076 3288 2033 242 666 296 395 642	92 0 8 131 139 0 32 75 21 17 89 40 1114 0 74 314 0 5 9 0 254 1473 4078 1850 1068 3083 1580 242 629 212 374 371 2719 4209 2964 1076 3288 2033 242 666 296 395 642 4282	92 0 8 131 139 0 32 75 21 17 89 26 40 1114 0 74 314 0 5 9 0 254 1473 16 4078 1850 1068 3083 1580 242 629 212 374 371 2719 645 4 209 2 964 1076 3 288 2 033 242 666 296 395 642 4 282 688	92 0 8 131 139 0 32 75 21 17 89 26 2349 40 1114 0 74 314 0 5 9 0 254 1473 16 696 4078 1850 1068 3083 1580 242 629 212 374 371 2719 645 1602 4209 2964 1076 3288 2033 242 666 296 395 642 4282 688 4 647

Overall results

% of topic areas in the total | Location-based approach

- DEN: Canteens
- LTU: Vehicle fleet
- Water consumption and waste, railway trips, other business trips in no case higher than 2 %

Overall results

% of topic areas in the total | Market-based approach

Overall results t CO₂ equiv. / year

• In sum, all 18 NOCs bear (partial) responsibility for \sim 30 000 tons of CO₂ equivalents caused in 2022.

Overall results t CO₂ equiv. / year | Location-based approach

E	BEL B	iH C	CRO	CZE I	DEN I	ESP F	-RA	GRE I	RL	KOS	LTU	LUX	MKD	POL	POR	ROM	SVK
Buildings' energy consumption	47	3	75	58	696	111	79	331	0	14	4 52	9	472	7 1 491	12	2 109) 27
consumption							, 0				. 01			1 101		2 100	
Refrigerants	0	0	14	0	0	0	126	86	0	C) (0 0) () () 0	1278	3 18
Canteens	0	0	0	0	720	3	0	0	0	23	3 C) 0) () () 0	2	2 0
Materials usage	121	22	180	234	365	14	330	382	37	73	3 44	25	5 72	2 136	5 170	65	5 159
Commuting	44	4	45	44	135	29	31	86	24	1	L 12	9) 10) 19) 35	110) 18
Vehicle fleet	1	5	46	95	0	10	6	66	0	40) 44	17	22	1 113	3 33	56	5 17
Flights	696	85	29	54	157	558	1 7 10	596	120	105	5 31	. 59	67	7 131	L 345	222	2 315
Overnight stays	133	18	3	23	10	4	111	99	6	79) 1	. 6	5 18	3 19) 78	187	' 85
External events	0	734	0	3 686	247	0	672	211	51	326	5 104	268	8 77	7 2061	. 0	443	3 42
In-house events	1	32	59	4	0	422	104	38	0	C) () ()) 3	3 () 5	13	3 7
Others	3	8	8	3	134	6	88	89	1	E	5 1	. 1	. 3	3 7	2	145	5 109
Total	1 046	912	459	4 202	2 464	1 157	3 258	1 984	239	667	7 289) 394	747	7 3977	' 680	4 631	. 796

Overall results t CO₂ equiv. / year | Market-based approach

Overall results t CO₂ equiv. / year | Market-based approach

	BEL B	iH C	CRO (CZE I	DEN I	ESP I	FRA	GRE	IRL	KOS	5 LT	U L	UX N	1KD	POL	POR	ROM	SVK
Buildings'																		
energy	11	3	110	64	1 1 7 /	20	101	378		\cap	Q	58	Q	370	1 795	20	2 12/	28
consumption	44	5	119	04	11/4	29	101	570		0	9	50	9	370	1705	20	2 1 2 4	20
Refrigerants	0	0	14	0	0	0	126	86		0	0	0	0	0	0	0	1 278	18
Canteens					720	3					23						2	
Materials																		
usage	125	22	180	235	387	14	339	382	4	0	73	45	25	72	146	170	66	160
			45		105	20	24	0.0	2		4	10	0	10	10	25	110	10
Commuting	44	4	45	44	135	29	31	86	2	4	Ţ	12	9	10	19	35	110	18
Vehicle fleet	1	5	46	95	0	10	6	66		0	40	44	17	21	113	33	56	17
Flights	696	85	29	54	157	558	1 710	596	12	0	105	31	59	67	131	345	222	315
Overnight																		
stays	133	18	3	23	10	4	111	99		6	79	1	6	18	19	78	187	85
External	0	724	0	2 606	717	0	670	211	F	1	226	104	260	77	2 061	0	110	10
events	0	/34	0	3 686	247	0	672	211	5	1 ·	320	104	268	//	2 061	0	443	42
events	1	32	59	4	0	422	104	38		0	0	0	0	3	0	5	13	7
Others	3	8	8	3	134	6	88	91		2	10	1	1	5	9	2	145	109
Total	1 048	911	503	4 209	2 964	1 076	3 288	2 033	24	2	666	296	395	642	4 282	688	4 647	798

Learnings and next steps

- Carbon footprint has yielded interesting insights, particularly regarding emission hotspots
- Reduction strategies know where to prioritize
- > National Olympic Committees can autonomously compile carbon footprints results for future years
- > Changes over time can be monitored, assessed and measures can be adapted

ANNEX

Co-funded by the European Union

Emissions due to travels and overnight stays of athletes and entourage at the Olympic Games

t CO₂ equiv. / year | Location-based approach

Travels of athletes and their entourage to the Olympic Games (Summer and Winter) and overnight stays of athletes and their entourage inside the Village and other accredited accommodation

Emissions due to travels and overnight stays of athletes and entourage at the Olympic Games t CO₂ equiv. / year | Location-based approach

	BEL	BiH	CRO	CZE	DEN	ESP	FRA	GRE	IRL	KOS	LTU	LUX	MKD	POL	POR	ROM	SVK
Genera carbon footprint	: 1040	6 912	2 459	4 202	2 464	1 157	3 258	1 984	239	667	' 289) 394	1 747	3977	' 680	4 631	. 796
Annex Travels	232	2 70) 43	1 129	111	309	1 370	80	76	5 19) () 38	3 14	451	. 26	191	. 461
Annex Overnight stays	: ; () E	5 0	103	0	0	58	10) 2	2 () () 2	2 C) 127	' 0	49) 86
Tota	. 1279	9 987	7 503	5 434	2 574	1 467	4 686	2 073	317	687	' 289) 435	5 762	4 554	l 707	4 871	. 1344

YOUR CONTACTS

Office Darmstadt Rheinstraße 95 64295 Darmstadt

Tobias Wagner Senior Researcher

Phone: +49 6151 8191-138 Mail: t.wagner@oeko.de Hartmut Stahl Senior Researcher

Phone: +49 6151 8191-180 Mail: h.stahl@oeko.de Julia Schütz Researcher

Phone: +49 6151 8191-102 Mail: j.schuetz@oeko.de

Co-funded by the European Union

November 2024 Project ID: 101050284